MOCA
Text Retrieval and Search Engines
Text Mining and Analytics
Text Mining and Analytics
Topics
x y can (Confusion: 2453.0)
paradigmatic/syntagmatic relations (Confusion: 2399.27)
information entropy (Confusion: 2311.87)
entropi variabl predict (Confusion: 2267.47)
generative (Confusion: 1996.98)
music cours theta (Confusion: 1873.73)
classification (Confusion: 1735.4)
probabilistic model (Confusion: 1731.38)
probabl word distribut (Confusion: 1676.28)
can represent text (Confusion: 1567.53)
data model use (Confusion: 1361.11)
retrieval model (Confusion: 1231.92)
topic can time (Confusion: 1150.22)
topic model (Confusion: 1020.08)
opinion rate can (Confusion: 833.982)
Lectures
1.1 Overview Text Mining and Analytics: Part 1 (00:11:43)
1.10 Syntagmatic Relation Discovery: Entropy (00:11:00)
1.11 Syntagmatic Relation Discovery: Conditional Entropy (00:11:57)
1.12 Syntagmatic Relation Discovery: Mutual Information: Part 1 (00:13:55)
1.13 Syntagmatic Relation Discovery: Mutual Information: Part 2 (00:09:42)
1.2 Overview Text Mining and Analytics: Part 2 (00:11:44)
1.3 Natural Language Content Analysis: Part 1 (00:12:48)
1.4 Natural Language Content Analysis: Part 2 (00:04:25)
1.5 Text Representation: Part 1 (00:10:46)
1.6 Text Representation: Part 2 (00:09:29)
1.7 Word Association Mining and Analysis (00:15:39)
1.8 Paradigmatic Relation Discovery Part 1 (00:14:31)
1.9 Paradigmatic Relation Discovery Part 2 (00:17:53)
2.1 Topic Mining and Analysis: Motivation and Task Definition (00:07:36)
2.10 Probabilistic Topic Models: Expectation-Maximization Algorithm: Part 1 (00:11:05)
2.11 Probabilistic Topic Models: Expectation-Maximization Algorithm: Part 2 (00:10:39)
2.12 Probabilistic Topic Models: Expectation-Maximization Algorithm: Part 3 (00:06:25)
2.13 Probabilistic Latent Semantic Analysis (PLSA): Part 1 (00:10:38)
2.14 Probabilistic Latent Semantic Analysis (PLSA): Part 2 (00:10:15)
2.15 Latent Dirichlet Allocation (LDA): Part 1 (00:10:20)
2.16 Latent Dirichlet Allocation (LDA): Part 2 (00:12:03)
2.2 Topic Mining and Analysis: Term as Topic (00:11:31)
2.3 Topic Mining and Analysis: Probabilistic Topic Models (00:14:17)
2.4 Probabilistic Topic Models: Overview of Statistical Language Models: Part 1 (00:10:25)
2.5 Probabilistic Topic Models: Overview of Statistical Language Models: Part 2 (00:13:11)
2.6 Probabilistic Topic Models: Mining One Topic (00:12:21)
2.7 Probabilistic Topic Models: Mixture of Unigram Language Models (00:12:39)
2.8 Probabilistic Topic Models: Mixture Model Estimation: Part 1 (00:10:16)
2.9 Probabilistic Topic Models: Mixture Model Estimation: Part 2 (00:08:15)
3.1 Text Clustering: Motivation (00:15:52)
3.10 Text Categorization: Discriminative Classifier Part 1 (00:20:34)
3.11 Text Categorization: Discriminative Classifier Part 2 (00:31:46)
3.12 Text Categorization: Evaluation Part 1 (00:14:12)
3.13 Text Categorization: Evaluation Part 2 (00:10:51)
3.2 Text Clustering: Generative Probabilistic Models Part 1 (00:16:18)
3.3 Text Clustering: Generative Probabilistic Models Part 2 (00:08:37)
3.4 Text Clustering: Generative Probabilistic Models Part 3 (00:14:55)
3.5 Text Clustering: Similarity-based Approaches (00:17:48)
3.6 Text Clustering: Evaluation (00:10:11)
3.7 Text Categorization: Motivation (00:14:37)
3.8 Text Categorization: Methods (00:11:50)
3.9 Text Categorization: Generative Probabilistic Models (00:31:18)
4.1 Opinion Mining and Sentiment Analysis: Motivation (00:17:51)
4.10 Contextual Text Mining: Mining Casual Topics with Time Series Supervision (00:19:37)
4.11 Course Summary (00:18:36)
4.2 Opinion Mining and Sentiment Analysis: Sentiment Classification (00:11:47)
4.3 Opinion Mining and Sentiment Analysis: Ordinal Logistic Regression (00:13:43)
4.4 Opinion Mining and Sentiment Analysis: Latent Aspect Rating Analysis Part 1 (00:15:17)
4.5 Opinion Mining and Sentiment Analysis: Latent Aspect Rating Analysis Part 2 (00:14:43)
4.6 Text-Based Prediction (00:12:08)
4.7 Contextual Text Mining: Motivation (00:06:47)
4.8 Contextual Text Mining: Contextual Probabilistic Latent Semantic Analysis (00:17:59)
4.9 Contextual Text Mining: Mining Topics with Social Network Context (00:14:43)
Course Prerequisites & Completion (00:09:02)
Text Mining and Analytics (00:08:15)